Convergence and Superconvergence of Fully Discrete Finite Element for Time Fractional Optimal Control Problems
نویسندگان
چکیده
منابع مشابه
Superconvergence of mixed finite element methods for optimal control problems
In this paper, we investigate the superconvergence property of the numerical solution of a quadratic convex optimal control problem by using rectangular mixed finite element methods. The state and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Some realistic regularity a...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملSuperconvergence of Fully Discrete Finite Elements for Parabolic Control Problems with Integral Constraints
A quadratic optimal control problem governed by parabolic equations with integral constraints is considered. A fully discrete finite element scheme is constructed for the optimal control problem, with finite elements for the spatial but the backward Euler method for the time discretisation. Some superconvergence results of the control, the state and the adjoint state are proved. Some numerical ...
متن کاملError Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems
In this paper, we investigate the discretization of general convex optimal control problem using the mixed finite element method. The state and co-state are discretized by the lowest order Raviart-Thomas element and the control is approximated by piecewise constant functions. We derive error estimates for both the control and the state approximation. Moreover, we present the superconvergence an...
متن کاملSuperconvergence Analysis of Finite Element Methods for Optimal Control Problems of the Stationary Bénard Type
In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Bénard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Computational Mathematics
سال: 2021
ISSN: 2161-1203,2161-1211
DOI: 10.4236/ajcm.2021.111005